

Point. Click. Measure. It's as simple as that.

Integrated Developer Environment

To simplify test development Metrics Technology offers an Integrated Developer Environment (IDE) which includes several libraries of functional APIs that provide access to the ICV Communication Server, Instrument Drivers, PGU/ Oscilloscope Drivers, as well as Thermal and Prober Driver templates. It includes algorithm suites for characterization of capacitors and devices for determining device process profiles and reliability of gate oxides and other stress induced failure mechanisms.

Using the Metrics IDE to create custom algorithms, device engineers can create sophisticated test methodologies, but provide just the right level of control for system users.

Editi	g: C:\dev\metrics\bin\algs\REL_WLR\StressMeasure\VtMOS.vbs				
File E		7	VDC and E J:4		
34	'Begin Input Definitions	<u>í</u>			
35 36 37	#algdesc "VtMOS: Id-Vg Sweep Test[r]This program works with Metrics ICV version 4.0" #coninfo "SMU1 -> Drain [r]SMU2 -> Gate[r]SMU3 -> Src[r]SMU4 -> Subs"	E	The IDE license provi	ides a full-featured script edi	itor with
38 39	#definput "Vds" as float defvals "0.050" desc "Drain Voltage"		syntax assistance an i	interactive test execution en	vironment
40	#inputrule "Vds" range "-20,20" #definput "Vsub" as float defvals "0.00" desc "Substrate Voltage"		,		
42 43	#inputrule "Vsub" range "-20,20" #definput "Vg_start" as float defvals "0.00" desc "Gate Sweep Start Voltage"			debugger. The developer ca	
44 45	#inputrule "Vg_start" range "-20,20"		VBScripts for entering	g user-defined inputs and ou	itputs,
46	<pre>#definput "Vg_stop" as float defvals "1.6" desc "Gate Sweep Stop Voltage" #inputrule "Vg_stop" range "-20,20"</pre>			B instrument-specific comm	•
47	#definput "stepsize" as float defvals "0.05" desc "Step Size (V)" #inputrule "stepsize" range "-20,20"		U U		
49 50	<pre>#definput "Integration" as string defvals "SHORT" desc "Integration Time" #inputrule "Integration" list "SHORT,MED,LONG"</pre>		strings, and implemen	nting test branching. In addition	on the
51 52	#definput "VtExtraction" as string defvals "Ids" desc "Type of Vt Extraction Method" #inputrule "VtExtraction" list "Ids,Sqrt_Ids"		developer can use the	e included math libraries to	perform
53 54	#definput "DevType" as string defvals "NMOS" desc "Type of Device (used for Vt extraction)" #inputrule "DevType" list "NMOS,PMOS"		parameter extraction		•
55	#definput "ShowPlot" as string defvals "YES" desc "Show the data plot after the measurement?	This will slow the overall wafer proc	parameter extraction	and collection.	
56 57	<pre>#inputrule "ShowPlot" list "YES,NO" #definput "ShowPlotTime" as float defvals "5.0" desc "Time to show the data plot after the measurements"</pre>	urement. This will slow the overall			
58 59	#inputrule "ShowPlotTime" range "0.0,30.0"				
60 61	'End Input Definitions	Execute VBScript Algorithm		×	
62 63		Execute VBScript Algorithm			
64 65	Begin Output Definitions	Execute VBScript Algorithm Definition			
66 67	#defoutput "Vt" as float #defoutput "Gm_max" as float	Algorithm: C:\dev\metrics\bin\algs\	REL_WLR\StressMeasure\VtMOS.vbs		
68	#defoutput "Id_max" as float	,			
69 70	#defoutput "Vgs" as float array #defoutput "Ids" as float array	Description VtMDS: Id-Vg Sweep Test		Connection Information SMU1 -> Drain	
71	#defoutput "Gm" as float array	This program works with Metrics IC	V version 4.0	SMU2 -> Gate	
1 72	'End Output Dafinitions			SMU3 -> Src SMU4 -> Subs	
		Inputs Script Inputs: (Click on an input in the list to edit its value)			
		Vds 5.00000	Drain Voltage		
		Vsub 0.000000 Vg_start 0.000000			
		Vg_stop 4.00000 stepsize 0.100000			
		Integration SHORT VtExtraction Ids	Integration Time Type of Vt Extraction Method		
	For more information:	DevType NMOS ShowPlot YES	Type of Device (used for Vt extra Show the data plot after the mea		
		ShowPlotTime 5.00000	Time to show the data plot after t		
	www.metricstech.com				
	or	· · · · · · · · · · · · · · · · · · ·	•		
	(505) 761-9630		1		
			Prev	Finish Cancel Help	

Algorithms Suite

CV Algorithms

CVCalibration CVFrequencySweep CVBiasSweep_with_Hysteresis CVTimeSweep CVSinglePoint CVMinimumPhaseAngle CV2FrequencyMeasurement

WLR - Oxide Algorithms

J_RAMP – Current Ramp

V_RAMP – Voltage Ramp

V_TDDB – Constant Voltage Time to Breakdown

I_TDDB – Constant Current Time to Breakdown

V_SILC – Constant Accelerated Voltage – Stress Induced Leakage Current

WLR - Stress/Measure Algorithms

HCI – Hot Carrier Injection VtMOS – V Threshold Calculation

lspot – 4 Terminal Constant Bias DCStress – 4 Terminal Constant Bias Stress

Gummel – Forward Synchronous Sweep RGummel – Reverse Synchronous Sweep ACStress – 4 Terminal AC Bias Stress CP_CA – Charge Pumping Constant Amplitude

CP_VA - Charge Pumping Variable Amplitude

CP_VF – Charge Pumping Variable Frequency

NBTI – Negative Bias Temperature Instability and NBTI-On-The-Fly

NVM Capacitor Algorithms

NVMCycleCap NVMPulseCap NVMRampCycleCap NVMRampPulseCap

NVM Device Algorithms

NVMCycleDev NVMPulseDev NVMRampCycleDev NVMRampPulseDev

Description

Calibration functions for the supported meters. A sweep of the oscillator bias while measuring. A sweep of the DC bias while measuring device. A sweep of the DC bias with hysteresis while measuring device. A measurement of device parameters as a function of time. A single point measurement of device parameters. A sweep of the Impedance and Phase Angle to extract C. A measurement of Impedance and Phase Angle at two frequencies to extract capacitance versus bias.

Description

A current ramp test that increases the applied current to the Gate while measuring the charge (Qacc) and voltage.

A voltage ramp test that increases the applied voltage to the Gate while measuring the charge (Qacc) and current.

A constant voltage is applied to the device while the resulting current is monitored for breakdown.

A constant current is applied to the device while the resulting voltage is monitored for breakdown.

A constant accelerated stress voltage is applied to the device while the resulting current is monitored for breakdown.

Description

A combined algorithm that performs all functions of a traditional HCl test. This test sweeps the Gate voltage while applying a constant Drain voltage and extracts Vth.

This algorithm applies a bias to the device while measuring the current values. A constant accelerated DC stress voltage is applied to the device and current is monitored.

The Base-Emitter voltage is swept while the Collector voltage is held constant. The Base-Collector voltage is swept while the Emitter voltage is held constant. A constant accelerated AC stress voltage is applied to the device.

A constant amplitude AC signal is placed upon the gate of the device while the substrate current is measured.

A variable amplitude AC signal is placed upon the gate of the device while the substrate current is measured.

A variable frequency AC signal is placed upon the gate of the device while the substrate current is measured.

A combined algorithm that performs all functions of a traditional NBTI test.

Description

This algorithm applies write/erase pulse cycles to a capacitor. This algorithm applies pulses to a capacitor. This algorithm applies ramped write/erase pulse cycles to a capacitor. This algorithm applies ramp pulses to a capacitor.

Description

This algorithm applies write/erase pulse cycles to an NVM device. This algorithm applies pulses to an NVM device. This algorithm applies ramped write/erase pulse cycles to an NVM device. This algorithm applies ramp pulses to an NVM device.

Metrics Technology provided algorithms are based on JEDEC standards. Most of these algorithms have been verified using test structures provided by our partners or customers. Please refer to our website for the most current system requirements and instrument support.

Results from some algorithms may vary due to instrument performance or test structure designs. Full source code to the algorithms is provided to support user-defined enhancements. An annual license is required due to the additional support necessary to assist the end-user in making modifications.