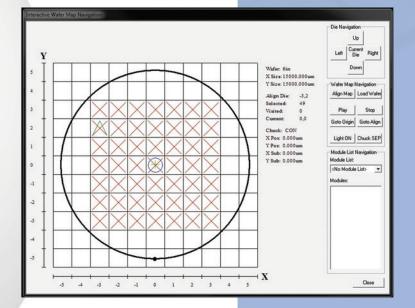


Point, Click, Measure. *It's as simple as that.*

Metrics ICV software supports all aspects of parametric test, from basic measurements using a test fixture or manual prober to full test automation across the wafer utilizing a switching matrix, probe card and automated probe station.

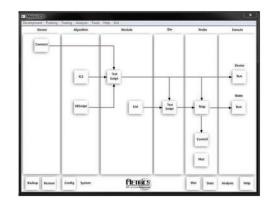

Fast and Easy Test Sequencing

Wizard-based script editors enable you to quickly perform test sequencing without programming. Using the built-in editor you can select existing script functions and then copy, paste, re-arrange, and edit items for device connections, algorithm parameters, user-defined variable lists and global variables. Once you have saved your scripts then simply select them from the run-time parameters window.

Metrics ICV						×
	Testing Analysis Too	ols Help Exit				
diting: C:\dev\metrics\b	in\scripts\modscripts\com	nbo_vtmos.scr		-	83	Execute
Description: ICS and ICV	vimos					
1) 2) 3) 4)	BEG Connect Device (Execute Algorith	Multiple } m (ICS\vtmos - VT_MOS) m (REL_WLR\StressMeasure\VtMOS)		Add Lin Insert Lin Delete Li	ne	
4)	END	Component Manager	-	1.0.000		23
		Collect F F ELSE Axign Switching Gorrect Device Apprihms S Execute Algorithm				
* m	Debug Print	St	Prev	Finish	Cancel	Help

Complete Wafer Test Automation

All popular semi-automatic and full automatic probers are supported by Metrics ICV prober tools. You can define the wafer, die, and sub-die information for probing across an entire wafer or a complete cassette of wafers on supported automatic wafer probers.



www.metricstech.com

Simple Workflow Based Interface

Metrics ICV improves productivity and reduces the time to implement complex tests using point and click editors for setting up each aspect of the test. This single unified environment allows for specifying everything from switch matrix device connections, module level actions, die navigation including sub-die definitions and wafer plan setup and execution.

This workflow interface is separated into logical steps defining the sequence necessary to set up a device level or full wafer level test methodology. Perform system configuration and maintenance functions like backup and restore as well as launch other provided tools from the same common user interface.

Operator Runtime Environment

The interface allows simple run-time parameter setup and execution. Record all pertinent process information along with test conditions in the test data file.

Start, Pause, Stop

Test and monitor run-time status output that provides easy to understand information about the test in progress.

tocess	SOI			
ot	L2300			
/aler	100			
task.	M28			
perator	ADM			
xecute Test	C:\dev\metric	Bro	we	
ave Results in:	C:\dev/metrics\bin\data\icv4156-vtmos-c-02.dat			
ave mesuns in	C:\dev\metrix	cs/bin/data/ucv4156-vtmos-c-02.dat	DIO	wse
Water Testing Cor		cs/bin/data/uci/4156-vtmol-c-02.dat		wse
Waler Testing Cor				•
Waler Testing Cor	figuration	ler Map.map		
Waler Testing Cor Waler Map:	SOI M28 Wal	ler Map.map		
Waler Testing Cor Waler Map: Use Auto Pri	figuration SOI M28 Wat obers as Semi-/ guration	ler Map.map		
Waler Testing Cor Waler Map: Use Auto Pri Themal Cortig Use The	figuration SOI M28 Wat obers as Semi-/ guration	ler Map.map		
Wafer Testing Cor Wafer Map: Use Auto Ph Themal Cords Use The Cort	figuration SOI M28 Wal obers as Semi-f guration mal	ler Map map Judo Probers		
Wafer Testing Cor Wafer Map: Use Auto Ph Themal Cords Use The Cort	vilguration SOI M28 Wal obers as Semi-/ guration mal roller perature (C):	ter Map.map Nuko Probes TEMP1		

The Metrics Technology Advantage

CONTINUITY IN THE LAB

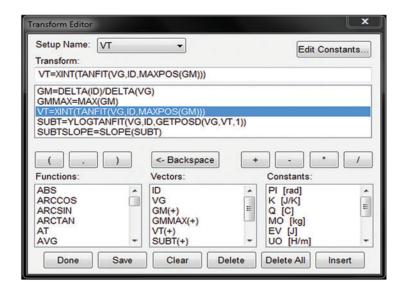
Metrics software allows you to implement a common software interface throughout the lab across multiple vendor's instruments. Your learning curve is greatly reduced because all instruments are presented in a unified and similar manner so you can begin making productive parametric measurements immediately with the latest or legacy equipment and instruments. The use of one software platform to cover a diverse equipment set improves communication and training time is reduced.

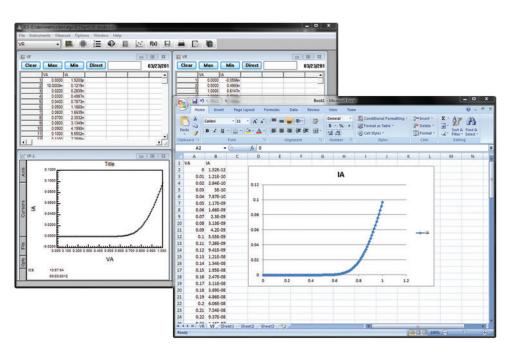
EASE OF USE

Metrics software provides easy setup for complex instrumentation through an interactive graphical user interface, and requires no programming by the end user. It has a full suite of data analysis tools and provides quick transfer of data to popular software packages. All this capability allows the engineer to focus on testing, not on writing and maintaining custom code.

DEDICATION

Metrics Technology's products have been created "by engineers for engineers". Our knowledge and products are specific to the semiconductor engineering laboratory. This is why our instrument drivers are more capable and flexible than our competitors. We understand the tests you are performing and the equipment you use. We work to address end-user challenges to create a better software platform. Our business is software and only software. Our products have been an industry standard for more than 20 years and have often been copied, but never duplicated.


Graphical Test Generation


This integrated feature provides the utmost in flexibility for instrument control and requires no programming. Simply select the device type then point and click to set up your test. Save the settings and then you are ready to execute the tests across the wafer.

		Setup Editor				
		New	Devices	Sources	Options	
		Сору	Rename	Delete	Time	VT
				SMU1		
MU2 Setup			×			
Source: SMU2 Module: HRSMU		Pulse Config		D		
	nge /pe Limited 👻	Period: 0.0100				
Current Current IG Va	lue 1nA 🔻	Width: 1.0000n		L,		
QSCV		Base: 0.0000		—j —	_ В	SMU4
Sweep		Options		- 1		
Mode Sweep	0.0000 Volts	Seq. No. 2				
Type Linear	3.3000 Volts	Standby OFF				
Stair Single Points	34	Stress Mode Sync -		S		
Step Size	0.1000 Volts	Series Res.				Done
Compliance	0.1000 Amps	Discharge OFF		SMU3		Done
Power Compliance OFF -	0.0000 Watts					
Time Stim Time Measurement Bias						
	0.0000 Volts					
Current Time Bias Compliance	0.1000 Amps	OK Cancel				

Numerical Transform Editor

Specify additional analysis functions using the built-in numerical transform editor to apply lists of equations to the measured data. Included are common numerical operators, line fitting, user-defined constants as well as other specialized functions specific to extracting parameters for semiconductor characteristics.

Automatic Data Collection and Report Generation

Metrics ICV has the ability to automatically export data in comma or tab-delimited ASCII format which can be easily imported into analysis tools such as Microsoft Excel, and other popular software packages such as spreadsheets, word processors, and databases. You can save data to any drive connected to the PC including shared volumes on the local area network. This allows you to view the test results on your desktop PC.

Test Applications

DEVICE CHARACTERIZATION

Automatically characterize new devices using sequential execution of measurements defined by easy to configure scripts which support switch matrix connections and test conditions as well as conditional branching. Data is stored in real-time including attributes such as process, lot, wafer, die location and more.

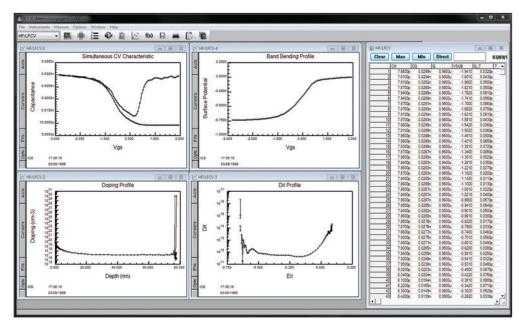
PROCESS MONITORING

Solve in-line production problems by tracking device parameters. Automatically export results to generate early warning reports using the built-in feature to create color wafer maps and statistical reports.

PROCESS DEVELOPMENT

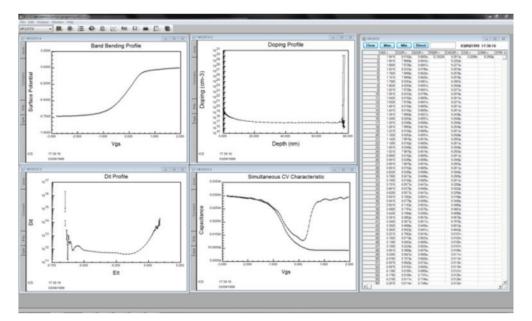
Automate parameter extraction such as V_{th} (Threshold Voltage) using the numerical Transform Editor. The Transform Editor defines nested equations used to extract parameters from raw measured data.

RELIABILITY


Perform on-wafer reliability tests such as TDDB (Time Dependent Dielectric Breakdown) and HCI (Hot Carrier Injection) with the WLR suite of algorithms included in the optional IDE (Integrated Developer Environment) license.

CV ANALYSIS

The IDE license also offers a suite of CV Algorithms that provide support for several popular CV meters. The algorithms are designed to provide simple access via VBScript to implement several testing methodologies including Bias Sweep, Time Sweep, Frequency Sweep, and Thin Oxide tests.


Combine IV and CV Testing

Using a switch matrix you can fully automate your IV and CV testing on wafer. Several supported CV instruments have special compensation algorithms provided for making accurate measurements through the high-frequency CV paths of the paired switch matrix.

NMOS IV Characteristics

CV drivers provide support for standard cable length and phase shift compensation. Open, short and load calibration routines are also provided for achieving maximum accuracy.

ICV Instrument Support

Model	Description	Model	Description	
Agilent(HP) 4140B	pA Meter/DC Voltage Source	Agilent(HP) 4275A	10 Hz-10 MHz Multi-frequency LCR Meter	
Agilent(HP) 4142B	, Modular DC Source/Monitor	Agilent(HP) 4280A	I MHz C-Meter/CV Plotter	
Agilent(HP) 4145A/B	Semiconductor Parameter Analyzer	Agilent(HP) 4284A	20 Hz-1 MHz Precision LCR Meter	
Agilent(HP) 4155A/B/C	Semiconductor Parameter Analyzer	Agilent(HP) 4285A	75 Hz-30 MHz Precision LCR Meter	
Agilent(HP) 4156A/B/C	Semiconductor Parameter Analyzer	Agilent(HP) 4192A	5 Hz-13 MHz Low Frequency Impedance	
Keysight E5270B	8-slot Precision Measurement Mainframe	Anaylzer		
E5280B	High Power Source/Monitor Unit (HPSMU)	Keysight E4980A	20 Hz-2 MHz Precision LCR Meter	
E5281B	Medium Power Source/Monitor Unit (MPSMU)	, 0		
E5286A	High Resolution Source/Monitor Unit (HRSMU)			
E5287A	Atto Level High Resolution Source/Monitor Unit	TCU and all connectors	C ,	
E5288A	Atto Sense and Switch Unit	Keithley Model 236*	Source Measure Unit	
Keysight 5272A	2-slot High Speed Source Monitor Unit	Keithley Model 237*	High Voltage Source Measure Unit	
Keysight 5273A	2-slot High Speed Source Monitor Unit	Keithley Model 238*	High Current Source Measure Unit	
Keysight E5260A	8-slot High Speed Measurement Mainframe	Keithley 2400 Series*	Digital Source Meter	
E5290A	High Power Source/Monitor Unit (HPSMU)	2410*	Digital High Voltage Source Meter	
E5291A	Medium Power Source/Monitor Unit (MPSMU)	2420*	Digital High Current Source Meter	
Keysight 5262A	2-slot High Speed Source Monitor Unit	2430*	Digital High Power Source Meter	
Keysight 5263A	2-slot High Speed Source Monitor Unit	Keithley 6430*	Sub-fA Source Meter	
Keysight B1500A	Semiconductor Device Analyzer	Keithley 2600A Series	Digital Source Meter	
B1510A	High Power Source/Monitor Unit (HPSMU)	2601A	20W Single Channel Source Meter	
BI5IIA	Medium Power Source/Monitor Unit (MPSMU)	2602A	20W Dual Channel Source Meter	
B1514A	50 us Pulse Medium Current Source/Measure Unit	2611A	200V Single Channel Source Meter	
	(MCSMU)	2612A	200V Dual Channel Source Meter	
B1517A	High Resolution Source/Monitor Unit (HRSMU)	2635A	I fA 20W Single Channel Source Meter	
Keysight B1505A	Power Device Analyzer/Curve Tracer	2636A	I fA 20W Dual Channel Source Meter	
B1512A	High Current Source/Monitor (HCSMU, DHCSMU)	Keithley 4200-SCS	Semiconductor Characterization System	
B1513A	High Voltage Source/Monitor Unit (HVSMU)	Keithley Model 82	C-V Characterization System	
N1258A	Module selector	Keithley Model 90	I-V Semiconductor Test System	
Keysight B2900A	Precision Source/Measure Unit	Keithley Model 590	C-V Analyzer	
B2901A	100 fA Single Channel Precision Source/Measure Unit	Keithley Model 595	C-V Quasi-static CV Meter	
B2902A	100 fA Dual Channel Precision Source/Measure Unit	QualiTau DSPT9012	Desktop Semiconductor Parametric Tester	
B2911A	10 fA Single Channel Precision Source/Measure Unit	Tektronix 370A/B	Curve Tracer	
B2912A	10 fA Dual Channel Precision Source/Measure Unit	Tektronix 371A/B	High Power Curve Tracer	

Probe Stations

All stations are controlled via GPIB. Metrics software should not reside on the probe PC due to resource conflicts.

Cascade Summit 10000 Nucleus v.4.x or Velox 2.0 Cascade Summit 12000 Nucleus v.4.x or Velox 2.0 Cascade S300 with Nucleus v.4.x or Velox 2.0 Cascade Elite-300 Nucleus v.4.x or Velox 2.0 Cascade PS-21 Alessi (Cascade) with Galaxy version 5.20H Suss Microtech PA200, PA300 with Prober Bench Software v.7.x Suss Microtech PS200, PS300 with Prober Bench Software v.7.x Micromanipulator 8860 with pcProbe 2.6 and pcBridge Micromanipulator 4460 with NetProbe Micromanipulator 9920 with NetProbe

Vector Semiconductor VX-3000SV Vector Semiconductor AX-2000

Signatone Stations (must be GPIB capable) Or (Stations with an Interlink Controller and GPIB control installed)

TEL P-8XL TEL P-12XL TEL 19S

Accretech UF300 Accretech UF2000 Accretech UF3000

Electroglas 1034 (with Option D) Electroglas 2001 Series Electroglas 3001 Series Electroglas 4085 Electroglas 4090

Semi-automatic Probe Station Semi-automatic Probe Station Semi-automatic Probe Station Semi-automatic Probe Station Full Automatic Probe Station Semi-automatic Probe Station

Semi-automatic Probe Station

Semi-automatic Probe Station

Semi-automatic Probe Station Semi-automatic Probe Station Semi-automatic Probe Station

Semi-automatic Probe Station Semi-automatic Probe Station

Semi-automatic Probe Station

Automatic Probe Station Automatic Probe Station Automatic Probe Station

Automatic Probe Station Automatic Probe Station Automatic Probe Station

Automatic Probe Station Automatic Probe Station Automatic Probe Station Automatic Probe Station Automatic Probe Station

Switch Matrices

HP 4084A/4085A

Agilent(HP) E5250A Agilent B2200A Agilent B2201A

Keithley 706 Keithley 707 Keithley 707A Keithley 708A Keithley 7001 Keithley 7002

MRD 4x28 MUX

Switch Matrix Controller and Matrix

Low-Leakage Switch Mainframe fA Low-Leakage Switch Mainframe Low-Leakage Switch Mainframe

Scanner Mainframe Switch Matrix Mainframe Switch Matrix Mainframe Single Slot Switch Mainframe Switch Control Mainframe Switch Control Mainframe

Multiplexer Switch Matrix

Minimum System Requirements

3 GHz Pentium 4-class Processor (or equivalent) I Gbyte RAM Windows 7 or 10 Professional, 32-bit or 64-bit 500 Mbyte available for product installation, plus additional capacity for test data 2 USB port (Security Dongle, USB->GPIB supported interfaces)

SXGA Monitor (1280 x 1024) minimum resolution Ethernet - LXI (TCP/IP) interface support

One of the following GPIB cards and the listed software: NI GPIB-PCI NI-488.2 Software version 16.0 oe later NI GPIB-USB-B/HS NI-488.2 Software version 16.0 or later

Agilent 82350 B/C Keysight IO Libraries Suite version 17.0 or later Keysight IO Libraries Suite version 17.0 or later Agilent 82357 A/B

Copyright © 1999 - 2017 Metrics Technology, Inc. All rights reserved. Windows and all applicable versions are registered trademarks of Microsoft Corp. All other trademarks are the property of their respective companies.